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a b s t r a c t

The demand for power keeps rising with rapid economic development and growth of industrialization.
The frequent mismatch created between demand and supply can be mitigated by the use of energy buy-
back programs. This papermodels a buy-back programusing a periodic review joint pricing and inventory
model, incorporating compensations and setup cost over finite planning horizons. It is shown that an
(s, S, A, P∗) policy is optimal for the decision maker for maximizing the expected total profit.
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1. Introduction

In recent years, the rapid developments of economies and
growth of industrialization have led to excessive consumption of
energy and resources. Factors such as slow growth of fuel supply
exacerbate the gap between electricity supply and demand. In
order tomitigate the electricity supply shortage, a variety of energy
buy-back programs arewidely adopted; see [8,13,14]. For example,
in the US energy market, Wisconsin Electric created an energy
buy-back program referred to as power market incentives that
pays large industrial customers for voluntarily reducing electric
load during peak time; Commonwealth Edison (ComEd) Company
created a load response program named ComEd smart returns
that pays business customers financial incentives for reducing the
electricity usage during times of high demand [1].

Suchprograms,when activated, provide participating industrial
customers with a certain amount of financial compensation for re-
ducing their energy use during peak time, and aim to encourage
electricity customers tomove their energy consumption frompeak
time to non-peak time, thus releasing the demand pressure during
peak time and smoothing the overall electricity consumption for all
time periods. Many high energy consumption manufacturers ac-
tively participate in various energy buy-back programs. However,
such participation will influence their pricing and inventory deci-
sions since they have to deal with the balance between (i) receiv-
ing financial compensation as a result of participation by reducing
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production and (ii) wishing to increase sales and satisfy customers’
demands, through production/inventory control.

Chen et al. [5] consider a periodic review production/inventory
problem in which a manufacturer participates in such an energy
buy-back program that rewards participantswith a certain amount
of financial compensation for reducing energy use. It is shown that
a base-stock policy is optimal for the non-peak market condition,
whereas the (s, S) policy is optimal for peak market conditions.
Chao andChen [2] consider a similar problemwith continuous time
production/inventory setting in two cases, whose settings are both
formulated asMarkovian decision processes. It is shown that in the
first case of the exponential peak-period duration, the production
and shutdown strategy is determined by a single threshold level,
whereas in the second case when the peak duration becomes
knownat the beginning of a peakperiod, the strategy is determined
by a sequence of threshold levels depending on the remaining time
before the current peak period ends. One simplification of such
models is the exclusion of setup cost, which seems to be fairly
common in real-world practice.

Because of the advances in information technology and the
development of E-commerce, a dynamic pricing strategy has been
adopted by a plethora retailing and manufacturing companies to
improve their management and performance. It has become an
effective tool for managing demands and reducing the production
and inventory pressure; see for example [3,6,9–11,15]. Specifically,
Federgruen and Heching [9] develop a combined pricing and
inventory control model under uncertainty without an energy
buy-back program. With the assumption that the ordering cost
is proportional to the order quantity, it is shown that a base-
stock–list-price policy is optimal. In this policy, the optimal
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replenishment policy in each period is characterized by an order-
up-to level, and the optimal price depends on the initial inventory
level at the beginning of each period. Besides, the optimal price
is a nondecreasing function of the initial inventory level. Chen
and Simchi-Levi [6,7] further extend the model proposed in [9]
with the inclusion of a fixed cost and show that the profit-to-go
function is symmetric k-concave when the demand function is in
the general form, and thus an (s, S, A, P∗) policy is optimal. Chao
et al. [3] consider a dynamic inventory and pricing optimization
problem in a periodic review inventory system with setup cost
and finite ordering capacity in each period. With strong CK -
concavity, it is shown that the optimal inventory policy can be
partially characterized by an (s, s′, p) policy. Zhu [15] analyzes the
combined pricing and inventory control problem in a random and
price-sensitive demand environment with return and expediting,
and shows that the optimal replenishment policy is a modified
base-stock policy, the pricing policy is a modified base-stock–list-
price policy, and the optimal policy for inventory adjustment
follows a dual-threshold policy. Chen et al. [4] study amulti-period
inventory planning problem inwhich the firm can source from two
possibly unreliable suppliers for a price-dependent demand, and
characterizes the optimal procurement policy and the conditions
under which the optimal policy reveals a monotone response to
changes in the inventory level.

Taking the approaches based primarily on [6,5], we consider a
joint pricing and inventory model under an energy buy-back pro-
gram over finite T planning horizons, in which the compensations,
setup cost and general demand function are incorporated. At the
beginning of each period, pricing and inventory decisions are si-
multaneously made. The objective is to identify the optimal joint
pricing and inventory strategy under an energy buy-back program
in order to maximize the expected total profit. It is shown that, for
the general situation with an energy buy-back program, the opti-
mal joint pricing and inventory strategy is also of (s, S, A, P∗) type.

The rest of this paper is organized as follows. The next section
introduces the model formulation. Section 3 presents the main
result. Section 4 provides a numerical example and the final section
concludes this paper.

2. Settings and the model

Consider a manufacturer who has to make joint pricing and
inventory decisions over finite T planning horizons. Assume that
the demands in different periods are independent of each other and
all shortages are backlogged.

At period t , suppose there are M peak states and define a fi-
nancial compensation, Lti, for each peak state i, with Lti > 0, i =

1, 2, . . . ,M , corresponding to the energy buy-back level. Without
loss of generality, we can get these Ltis sorted, namely, 0 < Lt1 ≤

Lt2 ≤ · · · ≤ LtM . For each period t , we introduce a constant setup
cost K > 0, and let ct be the unit variable cost, wt be the demand,
Pt , P t and P t be the selling price, and lowest and highest feasible
selling price, respectively, Pt ∈ [P t , P t ], xt and yt be inventory lev-
els before and after production, respectively, yt ≥ xt , and pti be the
probability for peak state i to happen. Furthermore, we have the
following assumptions for the compensation levels and demand
function.

Assumption 1. For period t, Lt1 ≥ Lt+1 =
M

j=1 p(t+1)jL(t+1)j.

This assumption can be realized when the ptj, j = 2, . . . ,M ,
are relatively small; see [5,12].

Assumption 2. For period t , the demand function wt satisfies

wt = Dt(P, εt) := αtDt(P) + βt

where αt and βt are random variables with E{αt} = 1 and E{βt} =

0. The randomperturbations, εt = (αt , βt), are independent across
time; Dt(P, εt) is non-increasing and concave in P ∈ [P t , P t ]; and
the expected demand dt = E{wt} = Dt(P) is a finite and strictly
decreasing function in P ∈ [P t , P t ].

The additive case andmultiplicative case that can be considered
as special cases of Dt(P, εt) are both common in the economics
literature [11].

Assumption 3. For period t,D−1
t (d), the inverse function of Dt(P),

is continuous and strictly decreasing. The expected revenue,
Rt(d) := dD−1

t (d), is a concave function.

For period t , state i, the production cost includes both a fixed
cost and a variable cost:

δ(yt − xt)(Lti + K) − Lti + ct(yt − xt)

where δ(x) =


1, x > 0
0, x = 0.

Due to backlogging, xt may be positive or negative. A cost ht(x)
is incurred at the end of period t that represents the inventory
holding cost when x > 0, and the penalty cost when x < 0.
Furthermore, let Gt(y, P) = E{ht(y − Dt(P, εt))}. For ht(x) and
Gt(y, P), we have the following two assumptions similar to those
in [6,9].

Assumption 4. For period t, ht(x) is a convex function of the
inventory level x and

lim
y→∞

Gt(y, P) = lim
y→−∞

[cty + Gt(y, P)]

= lim
y→∞

[(ct − ct+1)y + Gt(y, P)] = ∞.

Assumption 5. For period t, 0 ≤ Gt(y, P) = O(|y|ρ) for some
integer ρ, and E{Dt(P, εt)}

ρ < ∞ for all P ∈ [P t , P t ].

On the basis of the above assumptions, the expected total profit
Π over finite T planning horizons is

Π = E


T

t=1


Rt(dt) − Gt(yt , Pt) − ct(yt − xt)

− [δ(yt − xt)(Lti + K) − Lti]


.

At the beginning of period t , state i, the decision maker has to
decide whether to stop producing, and participate in the energy
buy-back program, or to start producing, and choose an inventory
level yt after production and selling price Pt , in order to maximize
the expected total profit Π over finite T planning horizons.

According to Assumption 2, there is a one-to-one correspon-
dence between the selling price Pt and the expected demand
E{wt} = Dt(Pt) = dt ∈ [dt , dt ] where dt = Dt(P t) and dt =

Dt(P t).
Therefore, the problem can be formulated as one of selecting,

at period t , state i, an inventory level yt and an expected demand
level dt such that the expected total profitΠ ′ over finite T planning
horizons is maximized:

Π ′
= E


T

t=1


Rt(dt) − Gt(yt , dt) − ct(yt − xt)

− [δ(yt − xt)(Lti + K) − Lti]


. (1)

Denote by vt(x, i) the profit-to-go function at the beginning of
period t , state i, with an initial inventory level x, and let vT+1(x, j) ≡
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0 for j = 1, . . . ,M . Then for period t , we have the following
dynamic program for Π ′:

vt(x, i) = max
y≥x


Rt(dt(y)) − Gt(y, dt(y)) − ct(y − x) − [δ(y − x)

× (Lti + K) − Lti] + E{vt+1(y − αtdt(y) − βt , j)}


where dt(y) is the expected demand associated with the best
selling price, P , for a given inventory level y at period t . By letting

Ft(x) =

M
j=1

p(t+1)jvt+1(x, j),

gt(y, d) = Rt(d) − cty − Gt(y, d) + E{Ft(y − αtd − βt)}

the dynamic program can be transformed to

vt(x, i)

= ctx + max
y≥x


−[δ(y − x)(Lti + K) − Lti] + gt [y, dt(y)]


. (2)

3. Analysis

Weuse amore general demand function definition in this paper
and thus need to utilize a weaker version of k-convexity, referred
to as symmetric k-convexity, developed in [6].

Definition. A function f (x) is called sym-k-convex for k ≥ 0 if for
any x1, x2 and λ ∈ [0, 1],

f [(1 − λ)x1 + λx2] ≤ (1 − λ)f (x1) + λf (x2) + max{λ, 1 − λ}k.

A function f (x) is called sym-k-concave if −f (x) is sym-k-convex.

We summarize the properties of a sym-k-convex function as
follows; see [6] for details.

Lemma 1. Suppose f (x) and g(x) are symmetric k- and m-convex,
respectively. We have: (i) f (x) is sym-n-convex for any n ≥ k ;
(ii) αf (x) + βg(x) is sym-(αk + βm)-convex if α, β ≥ 0; (iii) if
ξ is a random variable such that E{|f (x − ξ) |} < ∞ for all x, then
E{f (x − ξ) } is sym-k-convex; (iv) f (x) + a is sym-k-convex for any
constant a; (v) if f (x) is continuous and lim|x|→∞ f (x) → ∞, then
there exists a pair (s, S) with s ≤ S such that: f (S) ≤ f (x) for all x; s
is the smallest value x such that f (S) + k = f (x); f (x) > f (s) for all
x < s, and f (x) ≤ f (z) + k for all x, z with (s + S)/2 ≤ x ≤ z.

Theorem 1. For period t, state i,

(i) gt(y, d) = O(|y|ρ) and vt(x, i) = O(|x|ρ); gt(y, d) is contin-
uous in (y, d) and for any d ∈ [dt , dt ], lim|y|→∞ gt(y, d) →

−∞—hence, for any fixed y, gt(y, d) has a finite maximizer, de-
noted by dt(y);

(ii) gt(y, d) and vt(x, i) are sym-(K + Lti)-concave;
(iii) there exists a pair (sit , St) with sit ≤ St and a set Ai

t ⊂ [sit ,
(sit + St)/2] such that it is optimal to: (a) reject the energy buy-
back program, set the expected demand level dt = dt(St), and
produce St − xt products when xt < sit or xt ∈ Ai

t ; or (b) accept
the energy buy-back program, set dt = dt(xt) and produce
nothing when xt ≥ sit and xt ∉ Ai

t .

Proof. Due to the assumptions and the one-to-one correspon-
dence between dt and Pt , the proof for (i) is similar to those in
[6,9]. We now prove (ii) by induction.
For period T , state i, since vT+1(x, j) ≡ 0 for all j, we have

gT (y, dT (y))

= max
d


RT (d) − cTy − GT (y, d) + E{FT (y − αTd − βT )}



= max
d


RT (d) − GT (y, d)


− cTy.

First of all, it follows from the convexity of ht(x) that Gt(y, d) =

E{ht(y− αtd− βt)} is jointly convex in (y, d); see [6,9] for a proof.
Since RT (d) and GT (y, d) are concave and convex, respectively, it
is easy to verify the concavity of maxd{RT (d) − GT (y, d)}. Hence,
gT (y, dT (y)) is concave and also sym-(K + LTi)-concave. Therefore,
there exists a maximizer ST to gT (y, dT (y)), and a solution siT with
siT ≤ ST to the equation gT (y, dT (y)) = gT (ST , dT (ST )) − (K + LTi).
According to (2), we have

vT (x, i) − LTi − cT x

=


gT (ST , dT (ST )) − (K + LTi), x < siT
gT (x, dT (x)), x ≥ siT .

The (K + LTi)-concavity of vT (x, i) − LTi − cT x can be justified
from the concavity of gT (y, dT (y)), and we can conclude the sym-
(K + LTi)-concavity of vT (x, i) = (vT (x, i) − LTi − cT x) + LTi + cT x
according to Lemma 1.

Hence, we conclude that both gT (y, dT (y)) and vT (x, i) are sym-
(K + LTi)-concave at period T .

Now suppose that vt+1(x, i) is sym-(K + L(t+1)i)-concave for
period t + 1. From Assumption 1, Lemma 1 and the sym-(K +

L(t+1)i)-concavity of vt+1(x, i), it is easy to verify the sym-(K +

Lt+1)-concavity of Ft . Then for any y1 < y2 and λ ∈ [0, 1], we
have

Ft((1 − λ)(y1 − αtdt(y1) − βt) + λ(y2 − αtdt(y2) − βt))

≥ (1 − λ)Ft(y1 − αtdt(y1) − βt) + λFt(y2 − αtdt(y2) − βt)

− max{λ, 1 − λ}(K + Lt+1). (3)

From the concavity of Rt(d) and −ht , we have

Rt((1 − λ)dt(y1) + λdt(y2))
≥ (1 − λ)Rt(dt(y1)) + λRt(dt(y2)) (4)

−ht((1 − λ)(y1 − αtdt(y1) − βt) + λ(y2 − αtdt(y2) − βt))

≥ −(1 − λ)ht(y1 − αtdt(y1) − βt)

−λht(y2 − αtdt(y2) − βt). (5)

By adding (3) (4) (5) together and taking the expectation, we
have

gt((1 − λ)y1 + λy2, (1 − λ)dt(y1) + λdt(y2))
≥ (1 − λ)gt(y1, dt(y1)) + λgt(y2, dt(y2))

− max{λ, 1 − λ}(K + Lt+1). (6)

Since dt((1− λ)y1 + λy2) maximizes gt((1− λ)y1 + λy2, y) for
d ∈ [dt , dt ],

gt((1 − λ)y1 + λy2, dt((1 − λ)y1 + λy2))
≥ gt((1 − λ)y1 + λy2, (1 − λ)dt(y1) + λdt(y2)). (7)

With inequalities (6) and (7), we have

gt((1 − λ)y1 + λy2, dt((1 − λ)y1 + λy2))
≥ (1 − λ)gt(y1, dt(y1)) + λgt(y2, dt(y2))

− max{λ, 1 − λ}(K + Lt+1).
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Fig. 1. Optimal prices P∗ for varying K as a function of x.
Therefore,wederive the sym-(K+Lt+1)-concavity of gt(y, dt(y)),
and consequently the sym-(K + Lti)-concavity of gt(y, dt(y)) ac-
cording to Assumption 1 and Lemma 1.

For period t , state i, define v∗
t (x, i) = vt(x, i) − Lti − ctx. From

(2), the sym-(K + Lti)-concavity of gt(y, dt(y)) and Lemma 1, we
have

v∗

t (x, i) = vt(x, i) − Lti − ctx

=


gt(St , dt(St)) − (K + Lti), x ∈ It
gt(x, dt(x)), x ∉ It

(8)

where St is the maximizer of gt(y, dt(y)) and It = {y ≤ St :

gt(y, dt(y)) ≤ gt(St , dt(St)) − (K + Lti)}. Furthermore, we have

v∗

t (x, i) ≥


gt(x, dt(x)) for any x
gt(St , dt(St)) − (K + Lti) for any x ≤ St .

Let sit be the smallest value y such that gt(y, dt(y)) = gt(St ,
dt(St)) − (K + Lti). We then have (−∞, sit) ⊂ It and [(sit + St)/2,
∞] ⊂ Ict . To derive the sym-(K + Lti)-concavity of vt(x, i), it
suffices to prove that v∗

t (x, i) is sym-(K + Lti)-concave according
to Lemma 1. Let xλ = (1 − λ)x1 + λx2 for x1 ≤ x2, λ ∈ [0, 1],
and consider four different cases: (a) x1, x2 ∉ It ; (b) x2 ∈ It ; (c)
x2 ∉ It , x1 ∈ It and xλ ≤ St ; and (d) x2 ∉ It , x1 ∈ It and xλ ≥ St . In
what follows, we only show that the result holds for case (d) and
omit the proofs for the other three cases since they follow a similar
logic.

If x2 ∉ It , x1 ∈ It and xλ ≥ St , then there exists 0 ≤ µ ≤ λ such
that xλ = (1 − µ)St + µx2, and

v∗

t (xλ, i)
= gt(xλ, dt(xλ))

≥ (1 − µ)gt(St , dt(St)) + µgt(x2, dt(x2))
− max{µ, 1 − µ}(K + Lti)

≥ (1 − λ)gt(St , dt(St)) + λgt(x2, dt(x2))
+ (λ − µ)(gt(St , dt(St)) − gt(x2, dt(x2))) − (K + Lti)

≥ (1 − λ)(−(K + Lti) + gt(St , dt(St)))
+ λgt(x2, dt(x2)) − λ(K + Lti)

≥ (1 − λ)v∗

t (x1, i) + λv∗

t (x2, i) − max{λ, 1 − λ}(K + Lti). (9)
Table 1
Optimal stock policies for varying K .

(s11, S1) (s21, S1) (s12, S2) (s22, S2)

K = 0 (31.05, 51.21) (27.32; 51.21) (20.88, 37.25) (16.88, 37.25)
K = 3 (28.01, 53.06) (24.74, 53.06) (14.88, 37.25) (10.88, 37.25)

In (9), the first inequality follows from the sym-(K + Lti)-
concavity of gt(y, dt(y)); the third inequality follows from the fact
that St is the maximizer of gt(y, dt(y)) and µ ≤ λ.

Consequently, we can conclude the sym-(K + Lti)-concavity of
v∗
t (x, i), and thereby the sym-(K + Lti)-concavity of vt(x, i).
Hence, we conclude that both gt(y, dt(y)) and vt(x, i) are sym-

(K + Lti)-concave at period t . The proof for (ii) is complete.
Let Ai

t = It ∩ [sit , (s
i
t + St)/2] ; (iii) follows from (ii) and

Lemma 1. �

Due to the one-to-one correspondence between dt and Pt ,
the optimal policy (iii) in Theorem 1 can be transformed to an
(s, S, A, P∗) policy.

Corollary 1. For period t, state i, there exists a pair (sit , St) with
sit ≤ St and a set Ai

t ⊂ [sit , (s
i
t + St)/2] such that it is optimal to:

(a) reject the energy buy-back program, set P∗
t = D−1

t (dt(St)), and
produce St − xt products when xt < sit or xt ∈ Ai

t ; or (b) accept the
energy buy-back program, set P∗

t = D−1
t (dt(xt)) and produce nothing

when xt ≥ sit and xt ∉ Ai
t .

4. A numerical example

Consider a manufacturer facing a two-period two-state joint
pricing and inventory problem.We set two-period two-state com-
pensation levels L11 = 7, L12 = 10, L21 = 5, L22 = 7 with the two-
state probabilities being p21 = 0.9 and p22 = 0.1, respectively,
for the second period; α = 1; β ∼ U[−25, 25] ; unit variable cost
c1 = c2 = 0.5; holding and shortage cost function h1(x) = h2(x) =

|x|; expected demand function d = 100 − p. The results for the
setup costs K = 0 and 3 are summarized in Table 1 and Fig. 1.

Table 1 gives the optimal stock policies (sit , St) with or without
setup cost. It can be observed that St increases while sit decreases
as K increases from 0 to 3. Fig. 1 shows that the optimal price P∗

increases as K increases from 0 to 3. Both results illustrate that the
setup cost has obvious impacts on the optimal joint pricing and
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inventory policy for an energy buy-back problem and, in general,
St and P∗ will increase while sit will decrease as K increases.

5. Concluding remarks

This model can be extended to the infinite horizon expected
discount or average profit model with stationary parameters
under an energy buy-back program, whose analysis may be
more complicated due to the involvement of the convergence of
a sequence of finite horizon problems. However, by using the
methodology for extending the results for the finite horizon to the
infinite horizon given by Chen and Simchi-Levi [7], themain results
can be demonstrated to remain the same, along with a solution for
the optimality equation of the infinite horizonmodel for an energy
buy-back problem.
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