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The preceding tree cannot be simplified.

2. Consider the training examples shown in Table 4.1 for a binary classification
problem.

Table 4.1. Data set for Exercise 2.

Customer ID | Gender | Car Type Shirt Size Class
1 M Family Small Co
2 M Sports Medium Co
3 M Sports Medium Co
4 M Sports Large Co
5 M Sports Extra Large Co
6 M Sports Extra Large Co
7 F Sports Small Co
8 F Sports Small Co
9 F Sports Medium Co
10 F Luxury Large Co
11 M Family Large C1
12 M Family Extra Large C1
13 M Family Medium C1
14 M Luxury | Extra Large | C1
15 F Luxury Small C1
16 F Luxury Small C1
17 F Luxury Medium C1
18 F Luxury Medium C1
19 F Luxury Medium C1
20 F Luxury Large C1

(a) Compute the Gini index for the overall collection of training examples.
Answer:
Gini =1 -2 x 0.5 = 0.5.

(b) Compute the Gini index for the Customer ID attribute.
Answer:
The gini for each Customer ID value is 0. Therefore, the overall gini
for Customer ID is O.

(¢) Compute the Gini index for the Gender attribute.
Answer:

The gini for Male is 1 — 2 x 0.52 = 0.5. The gini for Female is also 0.5.
Therefore, the overall gini for Gender is 0.5 x 0.5 4+ 0.5 x 0.5 = 0.5.
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Table 4.2. Data set for Exercise 3.

as | Target Class
1.0
6.0
5.0
4.0
7.0
3.0
8.0
7.0
5.0 —
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(d) Compute the Gini index for the Car Type attribute using multiway
split.
Answer:
The gini for Family car is 0.375, Sports car is 0, and Luxury car is
0.2188. The overall gini is 0.1625.
(e) Compute the Gini index for the Shirt Size attribute using multiway
split.
Answer:
The gini for Small shirt size is 0.48, Medium shirt size is 0.4898, Large
shirt size is 0.5, and Extra Large shirt size is 0.5. The overall gini for
Shirt Size attribute is 0.4914.
(f) Which attribute is better, Gender, Car Type, or Shirt Size?
Answer:
Car Type because it has the lowest gini among the three attributes.
(g) Explain why Customer ID should not be used as the attribute test
condition even though it has the lowest Gini.
Answer:

The attribute has no predictive power since new customers are assigned
to new Customer IDs.

3. Consider the training examples shown in Table 4.2 for a binary classification
problem.

(a) What is the entropy of this collection of training examples with respect
to the positive class?
Answer:
There are four positive examples and five negative examples. Thus,
P(+) =4/9 and P(—) = 5/9. The entropy of the training examples is
—4/91og,(4/9) — 5/91ogy(5/9) = 0.9911.
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(b)

What are the information gains of a; and as relative to these training
examples?

Answer:

For attribute a1, the corresponding counts and probabilities are:

a | + | -
T |3 |1
F|1]4

The entropy for ay is

5|~ G/ Ioms(3/4) - (1/4) ogs1/4)

5
+ 9 [ —(1/5)1ogy(1/5) — (4/5)log2(4/5)] = 0.7616.
Therefore, the information gain for a; is 0.9911 — 0.7616 = 0.2294.

For attribute as, the corresponding counts and probabilities are:

ax | + | -
T |23
F |22

The entropy for as is

2| - Cmonters) - @5 10m6/5)]

5| mon e - @/ on/n] — 0o

Therefore, the information gain for as is 0.9911 — 0.9839 = 0.0072.

For ag, which is a continuous attribute, compute the information gain
for every possible split.

Answer:

a3 | Class label | Split point | Entropy | Info Gain
1.0 + 2.0 0.8484 0.1427
3.0 - 3.5 0.9885 0.0026
4.0 + 4.5 0.9183 0.0728
5.0 -

5.0 - 5.5 0.9839 0.0072
6.0 + 6.5 0.9728 0.0183
7.0 +

7.0 - 7.5 0.8889 0.1022

The best split for ag occurs at split point equals to 2.
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(d) What is the best split (among a1, as, and ag) according to the infor-
mation gain?
Answer:
According to information gain, a; produces the best split.
(e) What is the best split (between a; and ag) according to the classification
error rate?
Answer:
For attribute ay: error rate = 2/9.
For attribute ag: error rate = 4/9.
Therefore, according to error rate, a; produces the best split.
(f) What is the best split (between a; and as) according to the Gini index?
Answer:
For attribute a1, the gini index is

4 _1 —(3/4)* — (1/4)2_ + _1 —(1/5)% — (4/5)*| = 0.3444.

9
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For attribute as, the gini index is

g 1—(2/5)% - (3/5)2_ + g 1—(2/4)% — (2/4)%| = 0.4889.

Since the gini index for a; is smaller, it produces the better split.

4. Show that the entropy of a node never increases after splitting it into smaller
successor nodes.

Answer:

Let Y = {y1,vy2, - ,yc} denote the ¢ classes and X = {x1,x9, -,z } denote
the k attribute values of an attribute X. Before a node is split on X, the
entropy is:

c c k
E(Y) ==Y P(y)logy P(y;) = >_ Y Plxi,y;)log, P(y;),  (4.1)
j=1

j=1i=1

where we have used the fact that P(y;) = Zle P(z;,y,) from the law of
total probability.

After splitting on X, the entropy for each child node X = z; is:

E(Y|z;) = — ZP(yj‘xi)IOgQ P(yjlz:) (4.2)
j=1
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where P(y;|z;) is the fraction of examples with X = z; that belong to class
y;. The entropy after splitting on X is given by the weighted entropy of the
children nodes:

k

E(Y|X) = Y P()E(Y|z)

=1

- _ZZP (z;:)P(yj|x;) logy P(y;|x;)

=1 j=1

k¢
= —) > Plaiy;)log, Py;lzi), (4.3)

i=1 j=1

where we have used a known fact from probability theory that P(x;,vy;) =
P(yj|a;) x P(x;). Note that E(Y|X) is also known as the conditional entropy
of Y given X.

To answer this question, we need to show that E(Y|X) < E(Y). Let us com-
pute the difference between the entropies after splitting and before splitting,
ie, E(Y|X)— E(Y), using Equations 4.1 and 4.3:

E(Y|X) - E(Y)

k c k c

= =33 P(ai,y;)logy Plyjlas) + 3 > Plai,y;) logy Ply;)
i=1 j=1 i=1j=1

_ . Plyy)

= ;;P i Yj 10g2 P( | )

_ oo log, PEP@)

= ;;P i Yj) logg ———== Pleny) (4.4)

To prove that Equation 4.4 is non-positive, we use the following property of
a logarithmic function:

d d
Z ar log(zi,) < log ( Z akzk), (4.5)
k=1 k=1

subject to the condition that 22:1 ar, = 1. This property is a special case
of a more general theorem involving convex functions (which include the
logarithmic function) known as Jensen’s inequality.
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By applying Jensen’s inequality, Equation 4.4 can be bounded as follows:

EY|X) - E(Y)

IA

log, {

log,(1)

= 0

ShS P(a,)P(y;)
Zzp(xi,yj)P—]

i=1 j=1

('ri’yj)

k c
logs [;Pm)ZP(yj)}

Jj=1

Because E(Y|X) — E(Y) < 0, it follows that entropy never increases after

splitting on an attribute.

. Consider the following data set for a binary class problem.

Class Label

kL
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(a) Calculate the information gain when splitting on A and B. Which
attribute would the decision tree induction algorithm choose?

Answer:

The contingency tables after splitting on attributes A and B are:

A=T A=F

B=T B=F

+ 4

0

+

3

1

- 3

3

1

5

The overall entropy before splitting is:

Eorig = —0.410g 0.4 — 0.610og 0.6 = 0.9710

The information gain after splitting on A is:

Ej—r

Ea—r

A

4 4 3 3
——log - — —log - =0.9852

7987 7987
3.3 0. 0
glogg —glogg =0

Eorig — T/10Ea—7 — 3/10E4—p = 0.2813
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The information gain after splitting on B is:

3 3 1 1
Ep_r = 1 log 171 log 1= 0.8113
1 1 5 5
Ep-r = —=log=— —=log- =0.6500
B=F glosg —glosg 0.650
A = E,;,3—4/10Eg—r — 6/10Ep—F = 0.2565

Therefore, attribute A will be chosen to split the node.

(b) Calculate the gain in the Gini index when splitting on A and B. Which
attribute would the decision tree induction algorithm choose?

Answer:
The overall gini before splitting is:

Gorig =1—0.4%> — 0.6 = 0.48

The gain in gini after splitting on A is:

4\ /3\?
Ga 1—(Z) = (2) =o0.4898
3\?  /0\?
o= 1=(Z) = (Z2) =

A = Gopig— 7/10G a—1 — 3/10G 4—p = 0.1371

The gain in gini after splitting on B is:
1\ [3)\°
Gp=r (4> (4> 0.3750
1\ [5\°
= 1=(=) =([2) =02
Gp=r <6) <6) 0.2778

A = Gorig— 4/10Gp—1 — 6/10Gp_p = 0.1633

Therefore, attribute B will be chosen to split the node.

(¢) Figure 4.13 shows that entropy and the Gini index are both monotonously
increasing on the range [0, 0.5] and they are both monotonously decreas-
ing on the range [0.5, 1]. Is it possible that information gain and the
gain in the Gini index favor different attributes? Explain.

Answer:

Yes, even though these measures have similar range and monotonous
behavior, their respective gains, A, which are scaled differences of the
measures, do not necessarily behave in the same way, as illustrated by
the results in parts (a) and (b).

6. Consider the following set of training examples.



