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Modeling

Example 1

Giapetto’s Woodcarving, Inc., manufactures two types of wooden toys:
soldiers and trains. Demand for trains is unlimited, but at most 40 soldiers
are bought each week.

A soldier sells for $27 and uses $10 worth of raw materials. Each soldier
that is manufactured increases Giapetto’s variable labor and overhead costs
by $14. A train sells for $21 and uses $9 worth of raw materials. Each
train built increases Giapetto’s variable labor and overhead costs by $10.

The manufacture of wooden soldiers and trains requires two types of
skilled labor: carpentry and finishing. A soldier requires 2 hours of finishing
labor and 1 hour of carpentry labor. A train requires 1 hour of finishing
and 1 hour of carpentry labor. Each week, Giapetto can obtain all the
needed raw material but only 100 finishing hours and 80 carpentry hours.

How to maximize Giapetto’s weekly profit?
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Modeling

Decision Variables: The decision variables completely describe the
decisions to be made. Denote by x1 the number of soldiers produced
each week, and by x2 the number of trains produced each week.

Objective Function: The function to be maximized or minimized is
called the objective function. Since fixed costs (such as rent and
insurance) do not depend on the values of x1 and x2, Giapetto can
concentrate on maximizing his weekly profit, i.e.,

max 3x1 + 2x2.

Constraints:
1 Each week, no more than 100 hours of finishing time may be used.
2 Each week, no more than 80 hours of carpentry time may be used.
3 Because of limited demand, at most 40 soldiers should be produced

each week.

2x1 + x2 ≤ 100, x1 + x2 ≤ 80, x1 ≤ 40.

Sign Restrictions: x1 ≥ 0 and x2 ≥ 0.
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Solution Approach Linear Programming
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Solution Approach Linear Programming

The Graphical Solution
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Solution Approach Linear Programming

The simplex algorithm proceeds as follows:

Step 1 Convert the LP to standard form.

Step 2 Obtain a bfs (if possible) from the standard form.

Step 3 Determine whether the current bfs is optimal.

Step 4 If the current bfs is not optimal, then determine which nonbasic
variable should become a basic variable and which basic variable
should become a nonbasic variable to find a new bfs with a better
objective function value.

Step 5 Use EROs to find the new bfs with the better objective function
value. Go back to step 3.
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Solution Approach Linear Programming

Example 2

The Dakota Furniture Company manufactures desks, tables, and chairs.
The manufacture of each type of furniture requires lumber and two types
of skilled labor: finishing and carpentry. The amount of each resource
needed to make each type of furniture is given in the following table.

Currently, 48 board feet of lumber, 20 finishing hours, and 8 carpentry
hours are available. A desk sells for $60, a table for $30, and a chair for
$20. Dakota believes that demand for desks and chairs is unlimited, but at
most five tables can be sold. Because the available resources have already
been purchased, Dakota wants to maximize total revenue.
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Solution Approach Linear Programming

Define the decision variables as x1 the number of desks produced, x2 the
number of tables produced, and x3 the number of chairs produced.

max 60x1 + 30x2 + 20x3

s.t. 8x1 + 6x2 + x3 ≤ 48 (Lumber constraint)

4x1 + 2x2 + 1.5x3 ≤ 20 (Finishing constraint)

2x1 + 1.5x2 + 0.5x3 ≤ 8 (Carpentry constraint)

x2 ≤ 5 (Limitation on table demand) x1, x2, x3 ≥ 0

BV = {z , s1, s2, s3, s4} and NBV = {x1, x2, x3}.
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Solution Approach Linear Programming

Is the Current Basic Feasible Solution Optimal?
If we solve for z by rearranging row 0, then we obtain

z = 60x1 + 30x2 + 20x3.

Because a unit increase in x1 causes the largest rate of increase in z , we
choose to increase x1 from its current value of zero (the entering
variable). Observe that x1 has the most negative coefficient in row 0.

How large we can make x1?

s1 ≥ 0 for x1 ≤
48

8
= 6, s2 ≥ 0 for x1 ≤

20

4
= 5,

s3 ≥ 0 for x1 ≤
8

2
= 4, s4 ≥ 0 for all values of x1.

Therefore, we have
x1 = min{6, 5, 4} = 4.
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Solution Approach Linear Programming

Definition 3.1 (The Ratio Test)

When entering a variable into the basis, compute the ratio for every
constraint in which the entering variable has a positive coefficient. The
constraint with the smallest ratio is called the winner of the ratio test.
The smallest ratio is the largest value of the entering variable that will
keep all the current basic variables nonnegative.

To make x1 a basic variable in row 3, we use EROs to make x1 have a
coefficient of 1 in row 3 and a coefficient of 0 in all other rows. The final
result is that x1 replaces s3 as the basic variable for row 3 (pivoting, pivot
row, pivot term). Now BV = {z , s1, s2, x1, s4} and NBV = {s3, x2, x3}.
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Solution Approach Linear Programming

Definition 3.2

The procedure used to go from one bfs to a better adjacent bfs is called
an iteration (or sometimes, a pivot) of the simplex algorithm.

We now try to find a bfs that has a still larger z-value by examining
canonical form 1,

z = 240− 15x2 + 5x3 − 30s3.

After one more iteration, we reach

BV = {z , s1, x3, x1, s4} and NBV = {s2, s3, x2}.
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Solution Approach Linear Programming

If we rearrange row 0′′ and solve for z , we obtain

z = 280− 5x2 − 10s2 − 10s3.

Our current bfs from canonical form 2 is an optimal solution.

Step 1 Convert the LP to standard form.

Step 2 Find a bfs. This is easy if all the constraints are ≤ with
nonnegative right-hand sides as the slack variable si may be used
as the basic variable for row i . If no bfs is readily apparent, then
use the techniques to be discussed in later sections.

Step 3 If all nonbasic variables have nonnegative coefficients in row 0,
then the current bfs is optimal. If any variables in row 0 have
negative coefficients, then choose the variable with the most
negative coefficient in row 0 to enter the basis.

Step 4 Use EROs to make the entering variable the basic variable in any
row that wins the ratio test (ties may be broken arbitrarily). After
the EROs have been used to create a new canonical form, return
to step 3, using the current canonical form.
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Solution Approach Linear Programming

A Graphical Introduction to Sensitivity Analysis

Definition 3.3

Sensitivity analysis is concerned with how changes in an LP’s parameters
affect the optimal solution.

Reconsider the Giapetto problem:

max 3x1 + 2x2

s.t. 2x1 + x2 ≤ 100,

x1 + x2 ≤ 80,

x1 ≤ 40,

x1, x2 ≥ 0.

The optimal solution is z = 180, x1 = 20, x2 = 60. How would changes in
the problem’s objective function coefficients or right-hand sides change
this optimal solution?
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Solution Approach Linear Programming

Let c1 be the contribution to profit by each soldier. For what values of c1

does the current basis remain optimal?

If a change in c1 causes the isoprofit lines to be flatter than the carpentry
constraint, then the optimal solution will change from the current optimal
solution (point B) to a new optimal solution (point A).
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Solution Approach Linear Programming

Definition 3.4

Associated with any LP is another LP, called the dual. When taking the
dual of a given LP, we refer to the given LP as the primal.

A normal max problem may be written as

max c1x1 + c2x2 + . . .+ cnxn

s.t.

a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

. . . . . . . . .
am1x1 + am2x2 + . . . + amnxn ≤ bm

, xj ≥ 0
(1)

The dual of a normal max problem (normal min problem) is defined to be

min b1y1 + b2y2 + . . .+ bmym

s.t.

a11y1 + a21y2 + . . . + am1ym ≥ c1

a12y1 + a22y2 + . . . + am2ym ≥ c2

. . . . . . . . .
a1ny1 + a2ny2 + . . . + amnym ≥ cn

, yi ≥ 0
(2)
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Solution Approach Linear Programming

The Dual Simplex Method (max)

Suppose the initial simplex tableau is dual feasible.

Step 1 Is the right-hand side of each constraint nonnegative? If so, an
optimal solution has been found; if not, at least one constraint has
a negative right-hand side, and we go to step 2.

Step 2 Choose the most negative basic variable as the variable to leave
the basis. The row in which the variable is basic will be the pivot
row. To select the variable that enters the basis, we compute the
following ratio for each variable xj that has a negative coefficient
in the pivot row, and choose the one with the smallest ratio
(absolute value):

Coefficient of xj in row 0

Coefficient of xj in pivot row
.

Step 3 If there is any constraint in which the right-hand side is negative
and each variable has a nonnegative coefficient, then the LP has
no feasible solution. If no constraint indicating infeasibility is
found, return to step 1.
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Solution Approach Linear Programming

Changing a Right-Hand Side

If the rhs of a constraint is changed and the current basis becomes
infeasible, the dual simplex can be used to find the new optimal solution.

Suppose that 30 finishing hours are now available.
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Solution Approach Linear Programming

Matlab

Cplex

Gurobi

Lingo or Lindo

. . .
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Solution Approach Integer Programming

Definition 3.5

An integer programming problem (IP) is an LP in which some or all of
the variables are required to be non-negative integers, i.e., the Divisibility
Assumption in LP does not hold.

A pure integer programming problem

max 3x1 + 2x2

s.t. x1 + x2 ≤ 6 x1, x2 ≥ 0, x1, x2 integer.

A mixed integer programming problem

max 3x1 + 2x2

s.t. x1 + x2 ≤ 6, x1, x2 ≥ 0, x1 integer.

A 0-1 integer programming problem

max x1 − x2

s.t. x1 + 2x2 ≤ 2, 2x1 − x2 ≤ 1, x1, x2 = 0 or 1.
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Solution Approach Integer Programming

If you solve the LP relaxation of a pure IP and obtain a solution in which
all variables are integers, then the optimal solution to the LP relaxation is
also the optimal solution to the IP.

Example 3

The Telfa Corporation manufactures tables and chairs. A table requires 1
hour of labor and 9 square board feet of wood, and a chair requires 1 hour
of labor and 5 square board feet of wood. Currently, 6 hours of labor and
45 square board feet of wood are available. Each table contributes $8 to
profit, and each chair contributes $5 to profit.

Formulate and solve an IP to maximize Telfa’s profit.

max 8x1 + 5x2

s.t. x1 + x2 ≤ 6 (Labor constraint)

9x1 + 5x2 ≤ 45 (Wood constraint), x1, x2 ≥ 0, x1, x2 integer.
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Solution Approach Integer Programming
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Solution Approach Integer Programming

The key aspects of the branch-and-bound method for solving pure IPs may
be summarized as follows:

Step 1 If it is unnecessary to branch on a subproblem, then it is fathomed.
The following three situations result in a subproblem being
fathomed:

(1) The subproblem is infeasible;
(2) the subproblem yields an optimal solution in which all variables have

integer values; and
(3) the optimal z-value for the subproblem does not exceed (in a max

problem) the current LB.

Step 2 A subproblem may be eliminated from consideration in the
following situations:

(1) The subproblem is infeasible (in the Telfa problem, subproblem 4
was eliminated for this reason);

(2) the LB (representing the z-value of the best candidate to date) is at
least as large as the z-value for the subproblem (in the Telfa
problem, subproblems 3 and 7 were eliminated for this reason).
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Solution Approach Dynamic Programming

Figure: Technician Routing Problem with Experience-based Service Times
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Solution Approach Dynamic Programming

Technician Routing Problem with Experience-based Service
Times (TRP-EST)

Technicians have varying levels of experience across the tasks.

The experience depends on the number of times the technician has
performed the task.

The more experienced a technician is, the less time he/she needs to
complete the task.

The objective is to minimize the expected sum of the completion time
of the last task for each day.
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Solution Approach Dynamic Programming

Modeling the Problem as a Markov Decision Process

Decision epochs correspond to days

States correspond to experience levels of technicians on tasks

Actions correspond to a feasible set of routes that satisfy following
constraints:∑

i∈Ct∪{0}
∑

k∈K xk
ijt = 1 ∀j ∈ Ct , (3)∑

j∈Ct∪{Ct+1} xk
0jt = 1 ∀k ∈ K, (4)∑

i∈Ct∪{0} xk
i(Ct+1)t = 1 ∀k ∈ K, (5)∑

j∈Ct∪{0} xk
jit −

∑
j∈Ct∪{Ct+1} xk

ijt = 0 ∀i ∈ Ct ,∀k ∈ K, (6)

Bj ≥ Bi +
∑

k∈K(
∑

r∈R zirdk
it + τij)xk

ijt ∀i ∈ Ct ∪ {0},
∀j ∈ Ct , (7)

xk
it ∈ {0, 1} ∀i ∈ Ct ,∀k ∈ K, (8)

Bi ≥ 0 ∀i ∈ C ∪ {0,Ct + 1}.(9)
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Solution Approach Dynamic Programming

Modeling the Problem as a Markov Decision Process

Exogenous information corresponds to today’s customer requests.

Transition function: qk
r ,t+1(st , at) = qk

rt +
∑

i∈Ct :r(i)=r xk
it

Contribution function: c(st , at) = etmax ∀at ∈ At(st)

Objective function: minπ∈Π E
[∑T

t=1 C (st , δ
π
t (st))

]
Bellman’s equation:

V (st) = min
at∈At(st)

{c(st , at) + E [V (st+1) | st , at ]}.
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Solution Approach Dynamic Programming

Solution Approach: Approximate Dynamic Programming

Approximate the value functions:

Lookup tables

Parametric models

Nonparametric models

Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 35 / 41



Solution Approach Game Theory

1 General Procedure

2 Modeling

3 Solution Approach
Linear Programming

Sensitivity Analysis
Duality Theory
Commercial Softwares

Integer Programming
Dynamic Programming
Game Theory

4 LATEX

Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 36 / 41



Solution Approach Game Theory

Stackelberg Leadership Model

Players: Leader and follower.

Objective: Find the subgame perfect Nash equilibrium or equilibria
(SPNE)

Backward induction:
1 The leader considers what the best response of the follower is, i.e. how

it will respond once it has observed the quantity of the leader.

2 The leader then picks a quantity that maximises its payoff, anticipating
the predicted response of the follower.

3 The follower actually observes this and in equilibrium picks the
expected quantity as a response.
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Solution Approach Game Theory

Stackelberg Leadership Model

The profit of firm 2 (the follower) is revenue minus cost:

Π2 = P(q1 + q2) · q2 − C2(q2) (10)

To maximize Π2, set
∂Π2

∂q2
= 0 (11)
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Solution Approach Game Theory

Stackelberg leadership model

The profit of firm 1 (the leader) is revenue minus cost:

Π1 = P(q1 + q2) · q1 − C1(q1) (12)

To maximize Π1, set
∂Π1

∂q1
= 0 (13)
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LATEX

LATEX: A document preparation system

TeXShop: For IOS

CTEX: TEX with Chinese
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