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Introduction

Definition 1.1

An integer programming problem (IP) is an LP in which some or all of
the variables are required to be non-negative integers, i.e., the Divisibility
Assumption in LP does not hold.

A pure integer programming problem

max 3x1 + 2x2

s.t. x1 + x2 ≤ 6 x1, x2 ≥ 0, x1, x2 integer.

A mixed integer programming problem

max 3x1 + 2x2

s.t. x1 + x2 ≤ 6, x1, x2 ≥ 0, x1 integer.

A 0-1 integer programming problem

max x1 − x2

s.t. x1 + 2x2 ≤ 2, 2x1 − x2 ≤ 1, x1, x2 = 0 or 1.
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Introduction

Definition 1.2

The LP obtained by omitting all integer or 0− 1 constraints on variables is
called the LP relaxation of the IP.

The feasible region for any IP must be contained in the feasible region for
the corresponding LP relaxation. For any IP that is a max problem, this
implies that

Optimal z-value for LP relaxation ≥ optimal z-value for IP.

Consider

max 21x1 + 11x2

s.t. 7x1 + 4x2 ≤ 13,

x1, x2 ≥ 0, x1, x2 integer.

An IP is very difficult to solve because

Enumeration may be impossible.

Roundoff may be wrong or infeasible.
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Introduction

Example 1

Gandhi Cloth Company is capable of manufacturing three types of
clothing: shirts, shorts, and pants. The manufacture of each type of
clothing requires that Gandhi have the appropriate type of machinery
available. The machinery needed to manufacture each type of clothing
must be rented at the following rates: shirt machinery, $200 per week;
shorts machinery, $150 per week; pants machinery, $100 per week. The
manufacture of each type of clothing also requires the amounts of cloth
and labor shown in the left table. Each week, 150 hours of labor and 160
sq yd of cloth are available. The variable unit cost and selling price for
each type of clothing are shown in the right table.

Formulate an IP whose solution will maximize Gandhi’s weekly profits.
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Introduction

Define

x1 = number of shirts produced each week

x2 = number of shorts produced each week

x3 = number of pants produced each week

and for i = 1, 2, 3, define

yi =

{
1, if xi > 0 are manufactured,
0, if xi = 0.

We can have the following IP model:

max 6x1 + 4x2 + 7x3 − 200y1 − 150y2 − 100y3

s.t. 3x1 + 2x2 + 6x3 ≤ 150 (Labor constraint)

4x1 + 3x2 + 4x3 ≤ 160 (Cloth constraint)

x1 ≤ M1y1, x2 ≤ M2y2, x3 ≤ M3y3, (Fixed charge)

x1, x2, x3 ≥ 0, x1, x2, x3 integer,

y1, y2, y3 = 0 or 1.
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The Branch-and-Bound Method

If you solve the LP relaxation of a pure IP and obtain a solution in which
all variables are integers, then the optimal solution to the LP relaxation is
also the optimal solution to the IP.

Example 2

The Telfa Corporation manufactures tables and chairs. A table requires 1
hour of labor and 9 square board feet of wood, and a chair requires 1 hour
of labor and 5 square board feet of wood. Currently, 6 hours of labor and
45 square board feet of wood are available. Each table contributes $8 to
profit, and each chair contributes $5 to profit.

Formulate and solve an IP to maximize Telfa’s profit.

max 8x1 + 5x2

s.t. x1 + x2 ≤ 6 (Labor constraint)

9x1 + 5x2 ≤ 45 (Wood constraint), x1, x2 ≥ 0, x1, x2 integer.
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The Branch-and-Bound Method
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The Branch-and-Bound Method
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The Branch-and-Bound Method

Definition 2.1

When further branching on a subproblem cannot yield any useful
information, we say that the subproblem (or node) is fathomed.

Definition 2.2

A solution obtained by solving a subproblem in which all variables have
integer values is a candidate solution. The z-value for the candidate
solution is a lower bound on the optimal z-value for the original IP.

Definition 2.3

The LIFO (last in first out) approach, which chooses to solve the most
recently created subproblem, is often called backtracking. When
branching on a node, the jumptracking approach solves all the problems
created by the branching. Then it branches again on the node with the
best z-value.
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The Branch-and-Bound Method
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The Branch-and-Bound Method

The key aspects of the branch-and-bound method for solving pure IPs may
be summarized as follows:

Step 1 If it is unnecessary to branch on a subproblem, then it is fathomed.
The following three situations result in a subproblem being
fathomed:

(1) The subproblem is infeasible;
(2) the subproblem yields an optimal solution in which all variables have

integer values; and
(3) the optimal z-value for the subproblem does not exceed (in a max

problem) the current LB.

Step 2 A subproblem may be eliminated from consideration in the
following situations:

(1) The subproblem is infeasible (in the Telfa problem, subproblem 4
was eliminated for this reason);

(2) the LB (representing the z-value of the best candidate to date) is at
least as large as the z-value for the subproblem (in the Telfa
problem, subproblems 3 and 7 were eliminated for this reason).
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The Branch-and-Bound Method

Subproblems for branch-and-bound problems are often solved using some
variant of the dual simplex algorithm. In the Telfa example, the optimal
tableau for the LP relaxation is

z + 1.25s1 + 0.75s2 = 41.25
x2 + 2.25s1 − 0.25s2 = 2.25

x1 − 1.25s1 + 0.25s2 = 3.75

After solving the LP relaxation, we solved subproblem 2, which is just
subproblem 1 plus the constraint x1 ≥ 4.
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The Branch-and-Bound Method

Solving Mixed Integer Programming Problems

Modify the branch-and-bound method for solving pure IP by branching
only on variables that are required to be integers. Also, for a solution to a
subproblem to be a candidate solution, it need only assign integer values
to those variables that are required to be integers.

max 2x1 + x2

s.t. 5x1 + 2x2 ≤ 8, x1 + x2 ≤ 3, x1, x2 ≥ 0, x1 integer.
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The Branch-and-Bound Method

Solving Knapsack Problems

max c1x1 + c2x2 + . . . + cnxn

s.t. a1x1 + a2x2 + . . . + anxn ≤ b, xi = 0 or 1, (i = 1, 2, . . . , n)

Example 3

Stockco is considering four investments. Investment 1 will yield a net
present value (NPV) of $16, 000; investment 2, an NPV of $22, 000;
investment 3, an NPV of $12, 000; and investment 4, an NPV of $8, 000.
Each investment requires a certain cash outflow at the present time:
investment 1, $5, 000; investment 2, $7, 000; investment 3, $4, 000; and
investment 4, $3, 000. Currently, $14, 000 is available for investment.
Formulate an IP that will tell Stockco how to maximize the NPV.

max 16x1 + 22x2 + 12x3 + 8x4

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14, x1, x2, x3, x4 = 0 or 1
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The Branch-and-Bound Method

The optimal solution obtained by the branch-and-bound method is z = 42,
x1 = 0, x2 = x3 = x4 = 1. The “best” investment is not used.
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The Branch-and-Bound Method

Solving Combinatorial Optimization Problems

Example 4 (Machine Scheduling)

Four jobs must be processed on a single machine. The time required to
process each job and the date the job is due are shown in the following
table. The delay of a job is the number of days after the due date that a
job is completed (if a job is completed on time or early, the job’s delay is
zero). In what order should the jobs be processed to minimize the total
delay of the four jobs?

xij =

{
1 if job i is the jth job to be processed
0 otherwise
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The Branch-and-Bound Method

The jobs should be processed in the order 2− 1− 3− 4, with a total delay
of 12 days resulting.
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The Branch-and-Bound Method

Example 5 (Traveling Salesperson Problem)

Joe State lives in Gary, Indiana. He owns insurance agencies in Gary, Fort
Wayne, Evansville, Terre Haute, and South Bend. Each December, he
visits each of his insurance agencies. The distance between each agency
(in miles) is shown in the following table. What order of visiting his
agencies will minimize the total distance traveled?

Definition 2.4

An itinerary that begins and ends at the same city and visits each city
once is called a tour. A subtour is a round trip that does not pass
through all cities.
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The Branch-and-Bound Method

If the solution to the preceding assignment problem yields a tour, then it is
the optimal solution to the TSP. The optimal solution to the assignment
problem might be x15 = x21 = x34 = x43 = x52 = 1, which contains two
subtours. The results of the branch-and-bound procedure are given below.
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The Branch-and-Bound Method

We first solve the assignment problem (Subproblem 1) in the following
table. The optimal solution is x15 = x21 = x34 = x43 = x52 = 1.

We choose to exclude the subtour 3− 4− 3 by branching on Subproblem 1
by adding two subproblems: Subproblem 1 + (x34 = 0, or c34 = M)
(Subproblem 2); Subproblem 1 + (x43 = 0, or c43 = M) (Subproblem 3).
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The Branch-and-Bound Method

We arbitrarily choose Subproblem 2 to solve. The optimal solution is
z = 652, x14 = x25 = x31 = x43 = x52 = 1 with two subtours 1− 4− 3− 1
and 2− 5− 2.

We now branch on Subproblem 2 in an effort to exclude the subtour
2− 5− 2 by adding two subproblems: Subproblem 2 + (x25 = 0, or
c25 = M) (Subproblem 4); Subproblem 2 + (x52 = 0, or c52 = M)
(Subproblem 5).

We arbitrarily choose to solve Subproblem 4, and obtain the optimal
solution z = 668, x15 = x24 = x31 = x43 = x52 = 1 as a candidate solution.
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The Branch-and-Bound Method

The optimal solution to Subproblem 5 is z = 704,
x14 = x43 = x32 = x25 = x511. This solution is a tour, but z = 704 > 668.
Thus, Subproblem 5 may be eliminated from consideration.

We find the optimal solution to Subproblem is
x13 = x25 = x34 = x41 = x52 = 1, z = 652. This solution contains the
subtours 1− 3− 4− 1 and 2− 5− 2.
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The Branch-and-Bound Method

Because 652 < 668, we now branch on Subproblem 3 in an effort to
exclude the subtour 2− 5− 2by adding two subproblems: Subproblem 3 +
(x25 = 0, or c25 = M) (Subproblem 6); Subproblem 3 + (x52 = 0, or
c52 = M) (Subproblem 7).

The optimal solutions are z = 704 for Subproblem 6 and z = 910 for
Subproblem 7. Neither can yield an optimal solution.

Hence, Subproblem 4 thus yields the optimal solution: Joe should travel
from Gary to South Bend, from South Bend to Fort Wayne, from Fort
Wayne to Terre Haute, from Terre Haute to Evansville, and from
Evansville to Gary. Joe will travel a total distance of 668 miles.
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The Branch-and-Bound Method

Definition 2.5

A heuristic is a method used to solve a problem by trial and error when an
algorithmic approach is impractical.

We now discuss two heuristics for the TSP: the nearest-neighbor (NNH)
and the cheapest-insertion heuristics (CIH).

To apply NNH, we begin at any city and then “visit” the nearest city.
Then we go to the unvisited city closest to the city we have most
recently visited. Continue in this fashion until a tour is obtained.

In CIH, we begin at any city and find its closest neighbor. Then we
create a subtour joining those two cities. Next, we replace an arc in
the subtour [say, arc (i , j)] by the combination of two arcs−(i , k) and
(k, j), where k is not in the current subtour–that will increase the
length of the subtour by the smallest (or cheapest) amount. Let cij
be the length of arc (i , j). Note that if arc (i , j) is replaced by arcs
(i , k) and (k , j), then a length cik + ckj − cij is added to the subtour.
Then we continue with this procedure until a tour is obtained.
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The Branch-and-Bound Method
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The Branch-and-Bound Method

Suppose the TSP consists of cities 1, 2, 3, . . . ,N. For i 6= j , let cij =
distance from city i to city j and let cii = M, where M is a very large
number (relative to the actual distances in the problem). Also define

xij =

{
1 if the solution to TSP goes from city i to city j
0 otherwise

Then the solution to a TSP can be found by solving

min
∑
i

∑
j

cijxij

s.t.
N∑
i=1

xij = 1, j = 1, 2, . . . ,N,

N∑
j=1

xij = 1, i = 1, 2, . . . ,N,

ui − uj + Nxij ≤ N − 1, i 6= j , i = 2, 3, . . . ,N, j = 2, 3, . . . ,N,

xij = 0 or 1, uj ≥ 0.

Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 29 / 42



The Branch-and-Bound Method

The constraints ui − uj + Nxij ≤ N − 1 are the key to the formulation.
They ensure the following:

1 Any set of xij ’s containing a subtour will be infeasible (that is, they
violate ui − uj + Nxij ≤ N − 1).

2 Any set of xij ’s that forms a tour will be feasible (there will exist a set of
uj ’s that satisfy ui − uj + Nxij ≤ N − 1).

Exercise 2.1

1 Consider the solution x15 = x21 = x34 = x43 = x52 = 1 with two
subtours 1− 5− 2− 1 and 3− 4− 3. Show that the subtour 3− 4− 3
violates ui − uj + Nxij ≤ N − 1.

2 Consider the tour 1− 3− 4− 5− 2− 1 and choose u1 = 1, u2 = 5,
u3 = 2, u4 = 3, u5 = 4. Show that with this choice of the ui ’s,
ui − uj + Nxij ≤ N − 1 are satisfied.
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Implicit Enumeration

To express any pure IP as a 0− 1 IP: Simply express each variable in the
original IP as the sum of powers of 2. Let n be the smallest integer such
that we can be sure that xi < 2n+1. Then xi may be (uniquely) expressed
as the sum of 20, 21, . . . , 2n−1, 2n, and

xi = un2n + un−12n−1 + . . . + u222 + u12 + u0.

Example 6

Suppose xi ≤ 100. Then xi < 26+1 = 128, which indicates that

xi = 64u6 + 32u5 + 16u4 + 8u3 + 4u2 + 2u1 + u0, ui = 0 or 1.

Suppose xi = 93. Then u6 will be the largest multiple of 26 = 64 that is
contained in 93. This yields u6 = 1; then the rest of the right side of xi
must equal 93− 64 = 29. Then u5 will be the largest multiple of 25 = 32
containing 29. This yields u5 = 0. Continuing in this fashion, we can
finally derive 93 = 26 + 24 + 23 + 22 + 20.
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Implicit Enumeration

Definition 3.1

At each node, the variables whose values are specified are referred to as
fixed variables; and those unspecified variables are called free variables.
A specification of the values of all the free variables is called a completion
of the node.

Three main ideas used in implicit enumeration:

Suppose we are at any node. Given the values of the fixed variables at
that node, is there an easy way to find a good completion of that
node that is feasible in the original 0− 1 IP?

Example 7

max 4x1 + 2x2 − x3 + 2x4,

s.t. x1 + 3x2 − x3 − 2x4 ≥ 1 xi = 0 or 1.

If x1 = 0 and x2 = 1 are fixed, then the best we can do is set x3 = 0 and
x4 = 1. Since x is feasible, we have found the best feasible completion.
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Implicit Enumeration

Even if the best completion of a node is not feasible, the best
completion gives us a bound on the best objective function value that
can be obtained via a feasible completion of the node. This bound
can often be used to eliminate a node from consideration.

Example 8

Suppose we have previously found a candidate solution with z = 6, and
our objective is to maximize

4x1 + 2x2 + x3 − x4 + 2x5.

Also suppose that the fixed variables are x1 = 0, x2 = 1, and x3 = 1. Then
the best completion of this node is x4 = 0 and x5 = 1, which yields z = 5.
Because z = 5 cannot beat the candidate with z = 6, we can immediately
eliminate this node from consideration (whether or not the completion is
feasible is irrelevant).
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Implicit Enumeration

At any node, is there an easy way to determine if all completions of
the node are infeasible?

Example 9

Suppose that the fixed variables are x4 = 1, x2 = 1, and x3 = 1 and one of
the constraints is

−2x1 + 3x2 + 2x3 − 3x4 − x5 + 2x6 ≤ −5.

We assign values to the free variables that make the left side as small as
possible. If this completion of the node will not satisfy the constraint, then
certainly no completion of the node can. Thus, we set x1 = 1, x5 = 1, and
x6 = 0, which yields −1 ≤ −5, a contradiction.

In general, we check whether a node has a feasible completion by
looking at each constraint and assigning each free variable the best
value for satisfying the constraint.
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Implicit Enumeration

Example 10

Use implicit enumeration to solve the following 0− 1 IP:

max − 7x1 − 3x2 − 2x3 − x4 − 2x5

s.t. − 4x1 − 2x2 + x3 − 2x4 − x5 ≤ −3

− 4x1 − 2x2 − 4x3 + x4 + 2x5 ≤ −7

For x1, check the best completion (infeasible) and feasibility (feasible).
For x2, check the best completion (infeasible) and feasibility (feasible).
For x3, check the best completion (infeasible) and feasibility (feasible).
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Implicit Enumeration

Using the LIFO rule, for node 6, the best completion yields z = −9
(feasible). Using the LIFO rule, The best completion of node 7 yields
z = −7. However, it has no feasible completion, and it may be
eliminated from consideration. So does node 4.

Node 3 has no completion and may be eliminated from consideration.

Because there are no nodes left to analyze, the node 6 candidate with
z = −9 must be optimal.
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The Cutting Plane Algorithm

For the Telfa Corporation problem, after adding slack variables s1 and s2,
we found the optimal tableau for the LP relaxation as shown below.

To apply the cutting plane method, we begin by choosing any constraint in
the LP relaxation’s optimal tableau in which a basic variable is fractional.

Definition 4.1

Define [x ] to be the largest integer less than or equal to x.

x1 − 1.25s1 + 0.25s2 = 3.75

⇒x1 − 2s1 + 0s2 − 3 = 0.75− 0.75s1 − 0.25s2
(1)
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The Cutting Plane Algorithm

A cut (2) is then added to the LP relaxation’s optimal tableau:

0.75− 0.75s1 − 0.25s2 ≤ 0. (2)

The cut generated by this method has two properties:

Any feasible point for the IP will satisfy the cut.

The current optimal solution to the LP relaxation will not satisfy the
cut.

Proof.

Consider any point that is feasible for the IP. For such a point, x1 and x2
take on integer values, and the point must be feasible in the LP relaxation.
Thus, any feasible point should satisfy (1). Any feasible solution to the IP
must have s1 ≥ 0 and s2 ≥ 0. Because 0.75 < 1, any feasible solution to
the IP will make the rhs of (1) less than 1. For any feasible point to the
IP, the rhs of (1) will be an integer. Therefore, for any feasible point to
the IP, (2) holds.
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The Cutting Plane Algorithm

contd.

Since the current optimal solution to the LP relaxation has s1 = s2 = 0, it
cannot satisfy (2). Thus, if we choose any constraint whose right-hand
side in the optimal tableau is fractional, we can cut off the LP relaxation’s
optimal solution.
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The Cutting Plane Algorithm

Cut (2) may be written as −0.75s1 − 0.25s2 ≤ −0.75 and we add it to the
LP relaxation’s optimal tableau.

The dual simplex ratio test indicates that s1 should enter the basis in the
third constraint. The resulting tableau yields the optimal solution z = 40,
x1 = 5, and x2 = 0.
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